Hepatitis C: Managing Patients, Managing Treatment

Camilla S. Graham, MD, MPH
Division of Infectious Diseases
Beth Israel Deaconess Medical Center
Conflict of Interest Disclosure

Camilla S. Graham, MD, MPH:

-I have no financial relationships with a commercial entity producing healthcare-related products and/or services.

-Member, Drug Utilization Review Board, MassHealth

-Member, Pharmacy and Therapeutics Committee, Tufts Health Plan
Identifying Patients with Hepatitis C

- 4-5 million people in the US have hepatitis C virus (HCV) infection
 - NHANES estimates 3.2 million infected but this national survey excludes people who do not have a permanent address (homeless, incarcerated, nursing home residents), active military, and under-represents most groups outside White, African-American, and Mexican-Hispanic
 - Accounting for under-represented international populations, homeless, and groups that have a high prevalence like IDU and veterans gives the 5+ million estimate
- Most were infected in 1960’s through 1980’s
 - Up to 250,000 cases per year in 1980’s
 - About 50% infected via IDU, rest from blood transfusions, sex, tattoos, medical procedures, and other factors

Identifying Patients with Hepatitis C

- Up to 75% of people have not been diagnosed
 - 50% to 75% is estimated
- Risk-based screening misses many people
 - Overburdened primary care
 - Lack of knowledge for patients and providers
 - Stigma associated with IDU, even if decades ago
- Leading cause for liver transplantation and liver cancer (HCC)
 - 37% lifetime risk of HCV-related mortality for patients with chronic HCV

Baby Boomers (Born in 1945–1965) Account for 76.5% of HCV in the US\(^1\)

An estimated 35% of undiagnosed baby boomers with HCV currently have advanced fibrosis (F3-F4; bridging fibrosis to cirrhosis)\(^3\)

Who Should Be Tested for HCV

CDC Recommendations
- Everyone born from 1945 through 1965 (one-time)
- Persons who ever injected illegal drugs
- Persons who received clotting factor concentrates produced before 1987
- Chronic (long-term) hemodialysis
- Persons with persistently abnormal ALT levels.
- Recipients of transfusions or organ transplants prior to 1992
- Persons with recognized occupational exposures
- Children born to HCV-positive women
- HIV positive persons

USPSTF Grade B Recs*
- Everyone born from 1945 through 1965 (one-time)
- Past or present injection drug use
- Sex with an IDU; other high-risk sex
- Blood transfusion prior to 1992
- Persons with hemophilia
- Long-term hemodialysis
- Born to an HCV-infected mother
- Incarceration
- Intranasal drug use
- Receiving an unregulated tattoo
- Occupational percutaneous exposure
- Surgery before implementation of universal precautions

*Only pertains to persons with normal liver enzymes; if elevated liver enzymes need HBV and HCV testing

HCV Antibody Test Volume Increased after EMR Prompt in CareGroup

Average = 303 tests/4 weeks

Average = 438 tests/4 weeks

Average = 1192 tests/4 weeks

Beth Israel Deaconess Medical Center, Boston, MA, Quality Outcomes Data, 6/5/14
More Women Tested for HCV but More Men are Anti-HCV Positive

<table>
<thead>
<tr>
<th>Group</th>
<th>Number (%) Tested for HCV Ab</th>
<th>Anti-HCV Seroprevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Boomers</td>
<td>13,107</td>
<td>2.3%</td>
</tr>
<tr>
<td>Boomer women</td>
<td>7,555 (58%)</td>
<td>1.4% (34% of HCV Ab+ results)</td>
</tr>
<tr>
<td>Boomer men</td>
<td>5,552 (42%)</td>
<td>3.6% (66% of HCV Ab+ results)</td>
</tr>
<tr>
<td>All Non-Boomer</td>
<td>7,022</td>
<td>2.6%</td>
</tr>
<tr>
<td>Non-Boomer women</td>
<td>4,023 (57%)</td>
<td>1.9% (42% of HCV Ab+ results)</td>
</tr>
<tr>
<td>Non-Boomer men</td>
<td>2,999 (43%)</td>
<td>3.5% (58% of HCV Ab+ results)</td>
</tr>
</tbody>
</table>

Beth Israel Deaconess Medical Center, Boston, MA, Quality Outcomes Data, 6/5/14
Chronic HCV Infection May Lead to Chronic Liver Disease and Liver Cancer

Fibrosis
- Chronic HCV infection can lead to the development of fibrous scar tissue within the liver.

Cirrhosis
- Over time, fibrosis can progress, causing severe scarring of the liver, restricted blood flow, impaired liver function, and eventually liver failure.

Hepatocellular Carcinoma (with cirrhosis)
- Cancer of the liver can develop after years of chronic HCV infection.

Decompensated cirrhosis:
- Ascites
- Bleeding gastroesophageal varices
- Hepatic encephalopathy
- Jaundice

Chronic liver disease includes fibrosis, cirrhosis, and hepatic decompensation; HCC=hepatocellular carcinoma.
Projected Numbers of Decompensated Cirrhosis and Cases of HCC to Rise Through 2020

- Decompensated cirrhosis became more common after 1995 and is presently estimated at 11.7% of cirrhosis cases; the number of cases is expected to continue to increase through ~2020-2030
- HCC rose steeply after 1990. Based on the model, the incidence of HCV-related HCC is expected to peak in 2019 at almost 14,000 cases per year if the risk in HCV-infected persons with fibrosis remains the same

HCC=hepatocellular cancer; HCV=hepatitis C virus.

Deaths Due to HCV Infections Now Exceed Those Due to HIV Infection

Number of HCV-related deaths may be over 60,000 because of under-reporting on death certificates

Timing of Mortality Among Known HCV Cases in Massachusetts, 1992-2009

76,122 HCV diagnoses were reported to the MDPH between 1992 and 2009, 8,499 of these reported HCV cases died and are represented in the figure. Data as of 1/11/2011.

Hepatitis C Diagnosis has been Made: What to Discuss with the Patient

- Do not donate blood, body organs, other tissue, or semen
- Do not share personal items that might have small amounts of blood
 - Toothbrushes, razors, nail-grooming equipment
- HCV is not spread by hugging, kissing, food or water, sharing utensils, or casual contact
- If using illicit drugs, stop using. If continued, get into a treatment program and do not share needles, syringes or works
 - Concern among payers about poor adherence and reinfection after antiviral Rx
- If in short term, multiple or MSM relationships, use latex condoms. No condom use is recommended for long-term monogamous heterosexual couples
 - Maximum incidence rate of HCV sexual transmission estimated about 1 new infection per 190,000 sexual contacts per year (Terrault, *Hepatology*, 2013; 57(3):881)
- Limit Tylenol to 2 gm a day and discuss all other medications (including OTC and herbal) with a provider
- Check exposure status for hepatitis A and B and vaccinate if needed

Adapted from Winston et al. Management of hepatitis C by the primary care provider: Monitoring guidelines; 2010
Address Alcohol Use in HCV

• The CDC recommends brief alcohol intervention for all patients with HCV
• There is no “safe” amount of alcohol consumption
• Insist on absolute abstinence if patient has bridging fibrosis or cirrhosis
• Assess for risky alcohol use
 – Men: >2 drinks/day (>14/week) or more that 4 in one day
 – Women: >1 drink/day (>7/week) or more than 3 in one day
• Screen for alcohol misuse
 – How many times in the past year have you had X or more drinks in a day?”, where X is 5 for men and 4 for women, and a response of >1 is considered positive

Moyer et al. Screening and Behavioral Counseling Interventions in Primary Care to Reduce Alcohol Misuse: USPSTF Recommendation Statement. Annals Int Med; 14 May 2013 online
Baseline Labs in Patients with Newly Diagnosed HCV

- HCV RNA “viral load” (determines active infection)
- Hepatitis C genotype (determines treatment choice)
- Complete blood count (platelets <150,000 assc with cirrhosis)
- INR, Albumin, Total bilirubin (abnormal liver synthetic function often indicates advanced liver disease)
- Creatinine, Glucose, ALT, AST, Alkaline Phosphatase
- Hepatitis A serology: total or IgG (vaccinate if nonreactive)
- Hepatitis B serology: HBsAb, HBcAb, HBsAg (vaccinate if all nonreactive)
- HIV antibody
- Iron studies, ANA
- Assessment of liver fibrosis (such as Hepascore, Fibrotest, APRI, FIB-4, Fibroscan)

BIDMC HCV ECHO Program Recommendations, 2014
Determine Likelihood of Cirrhosis

- Noninvasive test results increase the likelihood of cirrhosis, especially if more than one are present:
 - APRI >1.5 or FIB-4 >3.25 (use on-line calculators)
 - FIB-4 more predictive of ESLD than liver biopsy (CROI 2014)
 - Hepascore or Fibrotest >0.74
 - Fibroscan >12.5
 - Platelets <150,000
 - Albumin < 3.5
- Splenomegaly on exam or ultrasound
- Any signs of liver decompensation
- MELD and Child-Pugh scores (use on-line calculators)

Berenguer #640 and Lo Re #650 CROI 2014
FibroScan - Transient Elastography

- Ultrasound determines velocity of shear wave in m/s, which is proportional to liver stiffness in kilopascal (kPa)
- Entire process requires 15 to 20 minutes, provides immediate results
- Falsely elevated results:
 - High ALT (>100)
 - Eating within 2 hours

Continuum of Fibrosis/Cirrhosis in HCV

Continuum of scores (in kPa)

<7 kPa = Stage 0-1
7-9.5 kPa = Stage 2
9.5-12.5 kPa = Stage 3
>12.5 kPa = Cirrhosis

>20 kPa = Increased risk
liver-related complications

70+ kPa

Management of Patients with Hepatitis C and Cirrhosis

- Every 6 month screening for liver cancer
 - Usually ultrasound
 - Consider CT or MRI if highly nodular liver; first exam
- Screening for esophageal varices
 - Repeat every 1-3 years depending on results
- Counsel on symptoms of hepatic encephalopathy
- Vaccination for pneumococcus
- Counseling around medication use to avoid overdose or adverse events (including common drugs like Tylenol and NSAIDS)
- Counseling about complete abstinence from alcohol
- Evaluation for antiviral treatment
 - Cure of HCV can reduce liver failure and liver cancer, even in patients with cirrhosis (+/- HIV coinfection)
- Possible referral for liver transplant services

http://www.aasld.org/practiceguidelines/pages/guidelinelist.aspx
SVR (Cure) Associated with Decreased All-Cause Mortality

530 patients with advanced fibrosis, treated with interferon-based therapy, and followed for 8.4 (IQR 6.4-1.4) years.

Van der Meer et al. JAMA 2012; 308:2584
Screening of Baby Boomers May Prevent >120,000 Deaths Due to HCV Infection

- 1,070,840 new cases of HCV identified with birth-cohort screening
- 552,000 patients treated
- 364,000 patients cured
- 121,000 deaths averted

Birth-cohort screening in primary care would identify 86% of all undiagnosed cases in the birth cohort, compared with 21% under risk based screening. Cost effectiveness of HCV screening is comparable to cervical cancer or cholesterol screening (cost/QALY gained with protease inhibitor+IFN+RBV = $35,700).

- Markov chain Monte Carlo simulation model of prevalence of hepatitis C antibody stratified by age, sex, race/ethnicity, history of injection drug use, and natural history of chronic hepatitis C.
- With pegylated interferon and ribavirin plus DAA treatment.
- Deaths due to decompensated cirrhosis or hepatocellular carcinoma within 1945-1965 birth cohort. 470,000 deaths under birth cohort screening vs 592,000 deaths under risk-based screening.

Current Negative Environment Created By High Price of HCV Drugs

- Confusion and doubt among HCV treaters
- Fear from PCPs about testing and certainly treatment
- Fear/outrage among payers (public and private)
- Hesitation in DPH/public outreach programs
- Questions about integrity of CDC work (research and KNOW MORE HEPATITIS campaign)
- Declarations by prisons, state Medicaids that HCV treatment is not of value
- Difficulty establishing broad baby boomer testing programs
- Rationing of treatment, ie F3-F4
- Conflict between provider, patient and payer over rationing
- No discussion of treatment as prevention
- Justification for overt discriminatory practices like mandating clean urine samples
- Confirmation by patients that they are not “worth” treatment
- Loss of vision about transformative, curative developments
“Standard of Care” Regimens for Hepatitis C Have Been Expensive for Years: Value of Cure

<table>
<thead>
<tr>
<th>Regimen</th>
<th>SVR rates (Genotype 1, Naïve)</th>
<th>2014 WAC Price</th>
<th>Cost per SVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pegasys + Ribavirin x 48 weeks(^1)</td>
<td>41%</td>
<td>$41,758</td>
<td>$101,849</td>
</tr>
<tr>
<td>Telaprevir + Pegasys + Ribavirin x 24 weeks(^2)</td>
<td>75%</td>
<td>$86,843</td>
<td>$115,791</td>
</tr>
<tr>
<td>Sofosbuvir + Pegasys + Ribavirin x 12 weeks(^3)</td>
<td>90%</td>
<td>$94,421</td>
<td>$104,912</td>
</tr>
</tbody>
</table>

\(^1\)McHutchison, NEJM 2009; \(^2\)Jacobson, NEJM 2011; \(^3\)Lawitz, NEJM 2013
Variables Important in HCV Management and Treatment Decision Making

- Genotype: 1, 2, 3, 4, 5 and 6
- Stage of liver fibrosis: F0-1 (mild), F0-F2 (mild to moderate), F2-F4 (moderate to advanced), F3-F4 (advanced), F4 (cirrhosis)
- Cirrhosis severity: Compensated (Child A), cirrhosis with portal hypertension, Decompensated (Child B/C), Clinical decompensation
- Hepatocellular carcinoma (and stage)
- Pre-Transplant
- Post-Transplant
- Extra-hepatic complications (renal, lymphoma, cryoglobulinemia, etc)
- Psychological distress from HCV infection
- Coinfections: HIV, HBV
- Prevention of transmission: Women pre-pregnancy, MSM, active IDU
Variables Important in HCV Management and Treatment Decision Making

• Naïve

• Previous treatment:
 – P/R relapse, P/R partial responder, P/R null responder
 – Telaprevir/boceprevir failure (Importance of relapse vs. nonresponder/breakthrough)
 – Sofosbuvir/RBV +/- IFN failure
 – Sofosbuvir/simeprevir failure
 – Other clinical trial failures
The World is Rapidly Changing in HCV

- Pegylated interferon (Peg-IFN) + ribavirin (RBV)
- Peg-IFN + RBV + Telaprevir
- Peg-IFN + RBV + Boceprevir
- Peg-IFN + RBV + Simeprevir
- Sofosbuvir+Ledipasvir x 8 weeks
- Paritaprevir/r/ombitasvir+dasabuvir+/-RBV x 12 weeks
- Sofosbuvir +RBV x 12 weeks
- Sofosbuvir+Ledipasvir x 12 weeks
- Sofosbuvir+Simeprevir x 12 weeks
- Paritaprevir/r/ombitasvir+dasabuvir+/-RBV x 24 weeks (geno 1a cirrhotic [F3-F4] null [non-] responders?)
- Sofosbuvir+RBV x 24 weeks
- Sofosbuvir+Ledipasvir x 24 weeks
- Sofosbuvir+RBV x 48 weeks
SVR-12 in Genotype 1 Patients Treated with Sofosbuvir+Ledipasvir (FDC)

Gilead Phase 3 Program:
- Genotypes 1a and 1b combined for all studies
- ION-1 with 15.7% cirrhosis
- ION-2 with 20% cirrhosis
- FDA approval anticipated October 10, 2014

EASL 2014
SVR in Genotype 1, Naïve, Non-cirrhotic Patients Treated with Sofosbuvir+Ledipasvir (ION-3)

Harvoni package insert, 10/11/14
Key Points with Sofosbuvir+Ledipasvir

• Most common AEs are fatigue and headache
• Taken with or without food
• Ledipasvir needs acid for solubility/absorption
 – Be careful with OTC acid blockers
• eGFR >30 mL/min/1.73m²
• No dose adjustment for Child-Pugh Class A, B, or C cirrhosis
• Pregnancy Class B
• Avoid P-gp inducers; see all other DDI data in PI
Hypothetical Examples for Treatment of Genotype 1, Naïve, Non-Cirrhotic Patients

<table>
<thead>
<tr>
<th>Regimen</th>
<th>SVR rates</th>
<th>WAC Price</th>
<th>Cost per SVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telaprevir + PegIFN + Ribavirin x 24 weeks²</td>
<td>75%</td>
<td>$86,843</td>
<td>$115,791</td>
</tr>
<tr>
<td>Sofosbuvir + PegIFN + Ribavirin x 12 weeks</td>
<td>90%</td>
<td>$94,421</td>
<td>$104,912</td>
</tr>
<tr>
<td>Sofosbuvir + Ledipasvir x 8 weeks</td>
<td>94%</td>
<td>$63,000</td>
<td>$67,021</td>
</tr>
<tr>
<td>Sofosbuvir + Ledipasvir x 12 weeks</td>
<td>99%</td>
<td>$94,500</td>
<td>$95,454</td>
</tr>
</tbody>
</table>

Package inserts for products
SOF+LDV: 8 Weeks if VL <6 Million?

- 100 person hypothetical cohorts: Genotype 1 HCV, naive, no cirrhosis, 60% have HCV VL < 6 million, 40% have >6 million.

- #1 Everyone receives 12 weeks:
 - 100 x $94,500 = $9,450,000
 - 3 relapses = 3 x 189,000 = $567,000
 - Total = $10,017,000
SOF+LDV: 8 Weeks if VL <6 Million?

- #2 If VL <6 million, receive 8 weeks and if VL >6 million receive 12 weeks:
 - 60 x $63,000 = $3,780,000
 - 2 relapse = 2 x $189,000 = $378,000
 - 40 x $94,500 = $3,780,000
 - 1 relapse = 1 x 189,000 = $189,000
 - Total = $8,127,000
SOF+LDV Example

• Convincing providers to use 8 weeks will require:
 – Assurances that retreatment of relapsers will be allowed
 – LOTS of education
 – Not relying on prior authorization alone
SVR in Genotype 1, Treatment-Experienced Patients Treated with Sofosbuvir+Ledipasvir (ION-2)

Harvoni package insert, 10/11/14
SOF+LDV in Treatment-Experienced Cirrhotic Patients

- We are making a decision based on 22 patients (!)
- Need real-world data (TARGET, Trio Health)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>SVR rates</th>
<th>WAC Price</th>
<th>Cost per SVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sofosbuvir+Ledipasvir x 12 weeks</td>
<td>86%</td>
<td>$94,500</td>
<td>$109,884</td>
</tr>
<tr>
<td>Sofosbuvir + Ledipasvir x 24 weeks</td>
<td>100%</td>
<td>$189,000</td>
<td>$189,000</td>
</tr>
<tr>
<td>Sofosbuvir + Simeprevir x 12 weeks (failed P/R)</td>
<td>90%</td>
<td>$150,320</td>
<td>$167,022</td>
</tr>
</tbody>
</table>
SVR-12 in Genotype 1 Patients Treated with Paritaprevir/r+Ombitasvir+Dasabuvir +/- RBV (3-D)

Phase 3 AbbVie program:
- All 12 week treatment arms
- Geno 1b no RBV
- Geno 1a with RBV
- All studies excluded cirrhotic patients expect TURQUOISE-II* (all genotype 1, both naïve and treatment experienced)
- FDA approval anticipated in December, 2014
Relatively Equivalent

Sofosbuvir + Ledipasvir

Paritaprevir/r + Ombitasvir + Dasabuvir +/- Ribavirin

- Overall efficacy
- Overall safety
- 24 wks required in treatment experienced, cirrhotic patients (maybe)
Advantage: SOF+LDV

Sofosbuvir + Ledipasvir

- Lower pill count
- Once a day dosing
- 8 week option
- Ribavirin not needed
- Fewer drug-drug interactions
- No ritonavir
- Data in decompensated liver disease
- Retreatment of failures sort of demonstrated

Paritaprevir/r + Ombitasvir + Dasabuvir +/- Ribavirin
Advantage: “3-D”

Sofosbuvir + Ledipasvir

Paritaprevir/r + Ombitasvir + Dasabuvir +/− Ribavirin

• SVR with 12 weeks treatment in Genotype 1b cirrhotic (F3-F4) null (non-) responders
Genotype 2

Naïve, with or without cirrhosis or Treatment experienced, no cirrhosis

Sofosbuvir+RBV x 12 weeks

Treatment experienced, with cirrhosis

Sofosbuvir+RBV x 12-16 weeks
Sofosbuvir+Peg-IFN+RBV x 12 weeks

2014 IDSA/AASLD Recommendations: www.hcvguidelines.org
SVR in Genotype 2 Patients Treated with Sofosbuvir+Ribavirin for 12 Weeks

EASL 2014

Treatment experienced, cirrhotic patients only had a 78% SVR with 16 weeks SOF+LDV. May wait for sofosbuvir + daclatasvir
Genotype 3

- **Naïve, with or without cirrhosis or Treatment experienced, no cirrhosis**
 - Sofosbuvir+RBV x 24 weeks
 - Sofosbuvir+Peg-IFN+RBV x 12 weeks

- **Treatment experienced, with cirrhosis**
 - Sofosbuvir+RBV x 24 weeks
 - Sofosbuvir+Peg-IFN+RBV x 12 weeks
 - Sofosbuvir+Ledipasvir + RBV x 12 weeks?
SVR in Genotype 3 Naive Patients Treated with Sofosbuvir+Ledipasvir +/- Ribavirin for 12 Weeks

EASL 2014
Prioritization Versus Rationing

• Prioritization involves determining and balancing:
 – Medical needs
 • Immediacy of patient suffering
 • Risk of increasing medical complexity of management
 • Future costs of complications (or not intervening)
 • Public health risks
 – Resource constraints
 • Provider capacity (eg, MA has ~175,000 patients with hepatitis C infection and ~250 HCV providers)
 • Distribution of providers
 • Financial limits (payer horizon typically ~1 to 3 years)

 – Most of us can accept prioritization
Rationing

• Limiting access to medical care
• Often non-attributable in US
 – Lack of or under insurance
 – Lack of access to appropriate providers
 – High co-pays
• Frank denial of medication coverage
 – Usually when a less expensive, “equivalent” alternative is available
• Much of EU, Canada, Australia ration medicine based on urgency of medical needs and anticipated clinical benefit
• Can be based on bias/discrimination
Treatment Priority
Per AASLD/IDSA/IAS–USA HCV Guidelines

1. Patients with **highest** risk for severe complications
 - Advanced fibrosis or compensated cirrhosis
 - Organ transplant
 - Type 2 or 3 essential mixed cryoglobulinemia with end-organ manifestations (ie, vasculitis)
 - Proteinuria, nephrotic syndrome, or membranoproliferative glomerulonephritis
Treatment Priority
Per AASLD/IDSA/IAS–USA HCV Guidelines

2. Patients with **high** risk for complications
 - Stage 2 fibrosis
 - HIV coinfection
 - HBV coinfection
 - Other coexistent liver disease (ie, NASH)
 - Debilitating fatigue
 - Type 2 diabetes mellitus (insulin resistant)
 - Porphyria cutanea tarda
Treatment Priority
Per AASLD/IDSA/IAS–USA HCV Guidelines

3. Persons with high transmission risk
 – MSM with high-risk sexual practices
 – Active injection drug users
 – Incarcerated persons
 – Persons on long-term hemodialysis

• “Cure as Prevention”
Medical Need Restriction

• Advanced fibrosis (Metavir F3-F4)
 – Evidenced by liver biopsy, transient elastography, Fibrotest, APRI or FIB-4 score, radiological imaging consistent with cirrhosis, physical findings or clinical evidence consistent with cirrhosis as attested by the prescribing physician
Response to Restricting Treatment to F3/F4

• Cannot require liver biopsy (may be highest risk of death in HCV care with all-oral regimens)
• Since no test can perfectly distinguish F2 from F3 or F3 from F4, limiting access to F3/F4 really means directing treatment to cirrhotic patients
• If we wait until advanced fibrosis, need to do life-long screening for HCC every six months even if cured (expense, logistics, patient anxiety)
• Prioritization of F2-F4 unless other compelling urgency may align with provider capacity
Restrictions Based on Current or History of Substance Abuse

• Prescriber assessment and documentation:
 – 3 to 12 months sobriety/abstinence from EtOH/drug use
 – Completion or enrollment in a treatment center
 – May require drug testing results

• Participate in counseling services

• Engage in care with an addiction specialist
Substance Use

• Biggest concern is potential impact on adherence
 – Many people with substance use issues able to remain adherent
 – Data from peg-IFN/RBV treatment
• Concern about reinfection
• Legal medical marijuana use
 – May improve adherence via management of side effects
• Ongoing hazardous alcohol use has multiple concerns:
 – Impact on adherence with abuse
 – Acceleration of fibrosis
 – Ongoing damage to the liver even if HCV is cured
• Most DAA clinical trials allow methadone +/- buprenorphine – not a concern with adherence
• Ability to study treatment as prevention
• Ask: Would we limit treatment in someone with XX disease?
Approaches for Substance Use

• Use adherence counselors or case managers
• Integrate HCV treatment into buprenorphine programs or methadone treatment
• Look at models to reduce re-infection
 – IDU
 – Sexual (MSM)
• Track rates of re-infection
 – Collaborate with DPH
Hypothetical Costs of Not Optimizing SVR Rates in Clinical Practice

10% difference in SVR rates for a $100,000 regimen result in:

• $12,384 “loss $ per unachieved cure” for each patient
• Cost of retreating all patients who did not achieve SVR
• Costs of liver complications (decompensation, liver cancer, etc.) in those who are not cured and progress
Practice Model for HCV Treatment Initiation: BIDMC Example

- Assess patients for readiness, insurance status, and fill out clinical assessment form
- Deliver the 1st fill of medication to provider office only
- Require teaching visit with clinical staff prior to starting treatment
- Document true start date and inform SP
- Set up ALL follow-up and lab appointments right after teaching visit
- Provide teaching handout and list of appointments to patient
- Utilize pill box / blister pack / smart phone reminder apps to enhance medication compliance
- Specialty pharmacy with weekly or biweekly phone call to patients for follow up assessment
- Adopt a real time tracking system (ie, TrioHealth)
 - Record patient baseline characteristics and treatment regimen
 - Prompt for wk 4, wk 12 viral load and SVR12 due dates
 - Method of communication for provider office and specialty pharmacy
Community Network in HCV

- Departments of Public Health
- Government Policy Makers
- Media
- Patient Advocacy Organizations
- Commercial Payers
- Government Payers
- Academic Centers
- Community Health Centers
- Prisons
- Private Primary Care Centers
- Community Gastroenterology
- Pharmacies
- Pharmaceutical Companies
- ECHO
Suggestions

• Create spreadsheets of all patient groups and all potential regimens with costs/cure
• Rank efficacy and safety first (clinicians won’t compromise on this), then cost
• Talk to clinicians and advocates about resources, prioritization, and opportunities to treat more patients
• Collaborate on strategies to enhance patient support and adherence